刘仕强

职称:教授

电子邮箱: samsqliu@fzu.edu.cn

属性1 职称:教授 属性2 电子邮箱: samsqliu@fzu.edu.cn
属性3 属性4
属性5 属性6

个人简介

刘仕强,2017年9月起任福州大学经济与管理学院“闽江学者”特聘教授,复杂系统优化与管理创新团队负责人,博士生导师。2016年11月至2017年7月,是西南交通大学交通与运输学院的特聘教授。在项目方面,近期以主持人获得国家自然科学基金面上项目“矿业生产调度优化方法研究”,并参与多项国家自科和社科项目。在学术方面,目前已发表学术论文90多篇,其中SCI收录50多篇,大多数为一作论文并发表在运筹学管理学领域多个国际权威期刊,包括Transportation Science等。1993-1999年六年里,在哈尔滨工业大学获得两个学士学位(分别是动力工程和经济学专业)和一个硕士学位(工程热物理专业)。之后,在海外求学和工作近20年。2000年获新加坡国立大学的全额学者奖学金(Researcher Scholarship)到工业与系统工程系学习和研究;2002年获得新加坡国立大学工业与系统工程系的研究型工学硕士学位;2003-2005期间在新加坡任自动化设备公司的设计工程师和南洋理工大学的国立淡马锡实验室(Temasek Lab)的软件工程师。2005年,获得澳大利亚昆士兰科技大学校长颁发的海外优秀博士生奖学金(Vice-Chancellor QIDS Scholarship Award)。2005-2009期间,在澳大利亚布里斯班的昆士兰科技大学(Queensland University of Technology: QUT)数学学院运筹学统计学系为博士生和研究助理,专注铁路调度理论创新和应用。在QUT,两年半完成博士论文的撰写,博士论文被提名全校最优论文奖。2009-2011期间,在昆士兰科技大学任博士后研究员主研澳洲昆士兰铁路调度决策优化软件和昆士兰煤矿供应链调度决策系统。2011-2016期间,担任产学研相结合的澳大利亚国立矿业优化研究所的高级研究员和首席研究员,主研澳大利亚国立矿业研究所(CRC ORE)联和必和必拓(BHPB:全球第一大矿业公司)的两个国家级科研项目:“研发先进的矿业调度方法”和“矿业项目的综合决策优化和风险评估”。在澳期间,被授予澳大利亚矿业优化研究所的最佳科技论文奖,澳大利亚运筹学协会授予的杰出青年科学家奖章,科学工程院院长颁发的学术优秀奖等。在中国期间,多次被提名申报国家级人才项目包括青年千人和青年长江。

学习经历

2005.10-2009.02,昆士兰理工大学(QUT),数学学院,决策科学系,运筹学博士 (昆士兰理工大学校长最优全额奖学金)

博士论文: “复杂铁路调度问题的建模和求解”,提名2008年的全校最佳博士论文

2000.07-2002.08,新加坡国立大学(NUS),工业与系统工程系,工业与系统工程硕士(新加坡国立大学全额学者奖学金)

硕士论文: “机器调度问题的启发式算法”

1997.09-1999.07,哈尔滨工业大学(HIT),能源科学和工程学院,工程硕士

硕士论文: “有限时间热力学和能源系统的优化分析方法”

1993.09-1997.07,哈尔滨工业大学(HIT),动力工程系,工程学士

1994.09-1998.06,哈尔滨工业大学(HIT),经济系,经济学学士(第二学位)

研究方向

调度理论与运用,管理科学与工业工程,运筹学,决策学,人工智能

• 矿业管理优化, 交通管理优化,医院管理优化,机器调度优化

• 库存管理,供应链优化,物流优化

• 网络建模,数学建模,线性规划,整数规划,启发式优化算法

• 大数据下的预测和决策,决策软件的开发

讲授课程

调度问题,模型和算法; 经典优化问题的数学建模;

科研项目

• 国家自然科学面上项目“矿业生产调度优化方法研究”,71871064,2019-2022,48万,主持人

• 国家自然科学面上项目“多代理混合车间调度模型与算法”,61873173,2019-2022,55万,第一参与人

• 国家社会科学面上项目“基于时隙的航空公司不正常航班协同恢复理论与方法研究”,18BGL003,2019-2022,20万,第一参与人

• 复杂系统优化与管理创新团队基金,2018-2021,60万,团队负责人

• 复杂系统优化与管理科研启动基金,2017-2020,50万,主持人

• 澳大利亚矿业研究所 (CRC ORE) 联和必和必拓 (BHP Billiton: 全球第一大矿业公司)的两个国家级科研项目:“研发先进的矿业调度方法”和“矿业项目的综合决策优化和风险评估”,2011-2016, 65万澳元,主研

• 澳大利亚科学院的国家级横向项目 (ARC Linkage Project):“动态铁路调度问题”,研发专家级铁路调度决策优化软件和研发煤矿供应链调度决策系统,2009-2011,20万澳元,主研

获奖经历

• 福建省ABC人才海外C类专家,福建省,中国,2019

• 经管出彩人,福州大学经管学院,2018

• 福建省闽江学者讲座教授,福建省,中国,2017

• 矿业研究所年度大会最佳科技论文奖(一年1个), 澳大利亚, 2011

• 科学工程院院长颁发的学术优秀奖(一年2个), 昆士兰科技大学, 澳大利亚, 2010

• 澳大利亚运筹学学会杰出青年科学家奖章(一年1个), 澳大利亚, 2009

• 最佳博士论文奖提名, 昆士兰科技大学, 澳大利亚, 2008.

• 校长颁发的最优全额博士奖学金(一年10个), 昆士兰科技大学, 澳大利亚, 2005-2008

• 全额助研博士奖学金, 德州大学奥斯丁分校, 美国, 2004

• 全额助研硕士奖学金, 工业与系统工程系, 新加坡国立大学, 新加坡, 2000-2002

近年发表的主要论文

发表论文

1. Zeng, L., Liu*, S.Q., et al. (2023). Designing a resilient and green coal supply chain network under facility disruption and demand volatility. Computers & Industrial Engineering, in press. (Elsevier, SCI-Q1; IF: 7.9).

2. Luan, F., Zhao, H., Liu*, S. Q., He, Y., & Tang, B. (2023). Enhanced NSGA-II for multi-objective energy-saving flexible job shop scheduling. Sustainable Computing: Informatics and Systems, 39, 100901. https://doi.org/10.1016/j.suscom.2023.100901 (Elsevier, SCI-Q1; IF: 4.5)

3. He, Y., Ma, H.-L., Park, W.-Y., Liu, S.Q., Chung, S.H. (2023). Maximizing Robustness of Aircraft Routing with Heterogenous Maintenance Tasks. Transportation Research Part E, in press. (Elsevier, SCI-Q1; ABS3; IF: 10.6).

4. Pan, W., & Liu*, S. Q. (2023). Deep reinforcement learning for the dynamic and uncertain vehicle routing problem. Applied Intelligence, 52, 405-422. https://doi.org/10.1007/s10489-022-03456-w (Springer; SCI-Q1; IF: 5.086; 15 citations)

5. Zhang, Q., Liu*, S. Q., D’Ariano, A. (2023). Bi-objective bi-level optimization for integrating lane-level closure and reversal in redesigning transportation networks. Operational Research, 23, 23. https://doi.org/10.1007/s12351-023-00756-y (Springer; SCI-Q2; IF: 2.841)

6. Gao, S., Li, B., Mao, L., Wang, W., Zou, D., Zheng, J., Zhou, M., Yu, S., Zheng, F., Yin, Y., Liu, S. Q., Yang, H., & Wang, H. (2023). A theoretical base for non-invasive prenatal paternity testing. Forensic Science International, 346, 111649. https://doi.org/10.1016/j.forsciint.2023.111649 (Elsevier; SCI-Q2; IF: 2.676)

7. Masoud, M., Elhenawy, M., Liu, S., Almannaa, M., & Glaser, S. (2023). A simulated annealing for optimizing assignment of e-scooters to freelance chargers. Sustainability, 15, 1869. https://doi.org/10.3390/su15031869 (SCI-Q2; IF: 3.889)

8. Liu*, S. Q., Bian, Z., Yin, Y., & Chen, Y. (2023). Literature review, classification and agendas on Japanese cell (Seru) production systems 日本式单元化生产系统(赛汝)的文献综述,分类和展望. Journal of Chongqing Normal University Natural Science (重庆师范大学学报自科版), 40(1), 1-14 (An invited review paper).

9. Liu*, S. Q., Zeng, L., & Li, X. (2023). A resilient coal supply chain network design model considering carbon emissions (考虑碳排放的弹性煤炭供应链网络设计模型). Journal of Chongqing Normal University Natural Science (重庆师范大学学报自科版), 40(1), 34-43.

10. Liu*, S. Q., Kozan, E., Masoud, M., Li, D., & Luo, K. (2022). Multi-stage mine production timetabling with optimising the sizes of mining operations: an application of parallel-machine flow shop scheduling with lot streaming. Annals of Operations Research, In press. https://doi.org/10.1007/s10479-022-05134-z (Springer, SCI-Q2; ABS3; IF: 4.820; 1 citation)

11. Liu*, S. Q., Kozan, E., Corry, P., Masoud, M., & Luo, K. (2022). A real-world mine excavators timetabling methodology in open-pit mining. Optimization and Engineering, In press. https://doi.org/10.1007/s11081-022-09741-4 (Springer; SCI-Q2; IF: 2.760; 4 citations)

12. Liu*, S. Q., Lin, Z., Li, D., Li, X., Kozan, E., & Masoud, M. (2022). Recent research agendas in mining equipment management: A review. Mining, 2, 769–790. https://doi.org/10.3390/mining2040043. (MPDI; an invited review with zero APC; 1 citation)

13. Zhang, Q., Liu*, S. Q., & Masoud, M. (2022). A traffic congestion analysis by user equilibrium and system optimum with incomplete information. Journal of Combinatorial Optimization, 43, 1391–1404. https://doi.org/10.1007/s10878-020-00663-4 (Springer; SCI-Q3; IF: 1.262; 6 citations)

14. Liu*, S. Q., Lin, Z., Li, D., Kozan, E., & Masoud, M. (2022). Mining Equipment Management. Scholarly Community Encyclopedia, In press. https://encyclopedia.pub/entry/39062

15. Liu*, S. Q., Wang, Y., & Feng, L. (2022). Literature classification and review of supply chain finance from perspective of financing services (供应链金融的文献分类与综述-基于融资服务视角). Journal of Beijing University of Posts and Telecommunications Social Sciences Edition (北京邮电大学学报 社会科学版), 24(1), 59–74. https://journalsk.bupt.edu.cn/CN/abstract/abstract10299.shtml (A Chinse Journal)

16. Luan, F., Li, R., Liu*, S. Q., Tang, B., Li, S., & Masoud, M. (2022). An improved sparrow search algorithm for solving the energy-saving flexible job shop scheduling problem. Machines, 10, 847. (MDPI; SCI-Q2; IF: 3.090; 5 citations)

17. Lin, Z., Liu*, S.Q., Li, X. (2022). Research progress of production and transportation equipment management in open pit mines (露天矿生产和运输设备管理研究进展). Mining Research & Development (矿业研究与开发), 42(12), 101-108.

18. Wang, Y., Liu*, S. Q., Li, X. (2022). Equilibrium decisions of iron ore supply chain finance under advance payment (预付款机制下的铁矿石供应链金融的均衡决策). Operations Research and Management Science (运筹与管理), In press.

19. Li, X., Liu*, S. Q., Lin, M., & Chen, Y. (2022). New-energy transformation and policy selection of conventional vehicle enterprises (传统车企的新能源转型模式和策略选择). Science Technology and Industry (科技和产业), 22(8), 193-204. (A Chinese Journal)

20. Ji, X., & Liu*, S. Q. (2022). Mathematical formulation and case studies for a rail-sea intermodal coal supply chain problem (铁海联运煤炭供应链的数学建模与案例分析). Logistics Engineering and Management (物流工程与管理), 44(6), 37-42. (A Chinese Journal)

21. Gai, Y., Yin, Y., Tang, J., & Liu, S. Q. (2022). Minimizing makespan of a production batch within concurrent systems: Seru production perspective. Journal of Management Science and Engineering, 7, 1-18. https://doi.org/10.1016/j.jmse.2020.10.002 (Elsevier; SCI-Q3; 9 citations)

22. Zeng, L., Liu*, S. Q., Kozan, E., Corry, P., & Masoud, M. (2021). A comprehensive interdisciplinary review of mine supply chain management. Resources Policy, 74, 102274. https://doi.org/10.1016/j.resourpol.2021.102274 (Elsevier; SCI-Q1; ABS2; IF: 8.222; 17 citations)

23. Liu*, S. Q., Huang, X., Li, X., Masoud, M., Chung, S.-H., & Yin, Y. (2021). How is China’s energy security affected by exogenous shocks? Evidence of China-US trade dispute and COVID-19 pandemic. Discover Energy, 1, 2. https://doi.org/10.1007/s43937-021-00002-6 (Springer; 15K+ Accesses; 9 citations)

24. Elhenawy, M., Komol, M. R., Masoud, M., Liu*, S. Q., Ashqar, H. I., Almannaa, M. H., Rakha, H. A., & Rakotonirainy, A. (2021). A novel crowdsourcing model for micro-mobility ride-sharing systems. Sensors, 21, 4636. https://doi.org/10.3390/s21144636 (MDPI; SCI-Q2; IF: 3.847; 4 citations)

25. Komol, M. M. R., Sagar, M. S. I., Mohammad, N., Pinnow, J., Elhenawy, M., Masoud, M., Glaser, S., & Liu*, S. Q. (2021). Simulation Study on an ICT-Based Maritime Management and Safety Framework for Movable Bridges. Applied Sciences, 11, 7198. https://doi.org/10.3390/app11167198 (MDPI; SCI-Q2; IF: 2.679; 7 citations)

26. Allihaibi, W. G., Masoud, M., Elhenawy, M., Liu, S. Q., Burke, J., & Karim, A. (2021). Solving the emergency care patient pathway by a new integrated simulation - optimisation approach. IEEE Access, 9, 100895–100910. https://doi.org/10.1109/ACCESS.2021.3096263 (IEEE Xplore; SCI-Q1; IF: 3.367; 3 citations)

27. Liu, P., & Liu*, S. Q. (2021). A rolling horizon approach scheme for an extended airline crew pairing problem (基于滚动时域算法框架下的机组配对扩展问题研究). Logistics Engineering and Management (物流工程与管理), 43(8), 126-131. (A Chinese Journal)

28. Li, W., Xi, Y., Liu, S. Q., Li, M., Chen, L., Wu, X., Zhu, S., & Masoud, M. (2020). An improved evaluation framework for industrial green development: Considering the underlying conditions. Ecological Indicators, 112, 106044. https://doi.org/10.1016/j.ecolind.2019.106044 (Elsevier; SCI-Q1; IF: 6.263; 26 citations)

29. Liu, S. Q., & Kozan, E. (2019). Integration of mathematical models for ore mining industry. International Journal of Systems Science - Operations and Logistics, 6(1), 55–68. https://doi.org/10.1080/23302674.2017.1344330 (Taylor & Francis; IF: 6.547; 15 citations)

30. Li, W., Xi, Y., Wu, F., Masoud, M., & Liu*, S. Q. (2019). Green development performance of water resources and its economic-related determinants. Journal of Cleaner Production, 239, 118048. https://doi.org/10.1016/j.jclepro.2019.118048 (Elsevier; SCI-Q1; IF: 9.297; 19 citations)

31. Luan, F., Cai, Z., Wu, S., Liu*, S. Q., & He, Y. (2019). Optimizing the low-carbon flexible job shop scheduling problem with discrete whale optimization algorithm. Mathematics, 7, 688. https://doi.org/10.3390/math7080688 (MDP; SCI-Q1; IF: 2.258; 26 citations)

32. Yan, P., Liu*, S. Q., Yang, C.-H., & Masoud, M. (2019). A comparative study on three graph-based constructive algorithms for multi-stage scheduling with blocking. Journal of Industrial and Management Optimization, 15(1), 221–233. https://doi.org/10.3934/jimo.2018040 (Aim Sciences; SCI-Q3; IF:1.801; 5 citations)

33. Li, W., Wang, J., Chen, R., Xi, Y., Liu, S. Q., Wu, F., Masoud, M., & Wu, X. (2019). Innovation-driven industrial green development: The moderating role of regional factors. Journal of Cleaner Production, 222, 344–354. https://doi.org/10.1016/j.jclepro.2019.03.027 (Elsevier; SCI-Q1; IF: 9.297; 65 citations)

34. Khan, W. A., Chung, S. H., Ma, H. L., Liu, S. Q., & Chan, C. Y. (2019). A novel self-organizing constructive neural network for estimating aircraft trip fuel consumption. Transportation Research Part E, 132, 72–96. https://doi.org/10.1016/j.tre.2019.10.005 (Elsevier; SCI-Q1; ABS3; IF: 10.6; 30 citations)

35. Masoud, M., Elhenawy, M., Almannaa, M. H., Liu, S. Q., Glaser, S., & Rakotonirainy, A. (2019). Heuristic approaches to solve e-scooter assignment problem. IEEE Access, 7, 175093–175105. https://doi.org/10.1109/ACCESS.2019.2957303 (IEEE Xplore; SCI-Q1; IF: 3.367; 31 citations)

36. Matindi, R., Hobson, P., Masoud, M., Kent, G., & Liu, S. Q. (2019). Developing a versatile simulation, scheduling and economic model framework for bioenergy production systems. International Journal of Industrial Engineering Computations, 10, 17–36. https://doi.org/10.5267/j.ijiec.2018.5.003 (Growing Science; SCI-Q2; JCR-3; IF: 2.455; 4 citations)

37. Matindi, R., Masoud, M., Hobson, P., Kent, G., & Liu, S. Q. (2018). Harvesting and transport operations to optimise biomass supply chain and industrial biorefinery processes. International Journal of Industrial Engineering Computations, 9, 265–288. https://doi.org/10.5267/j.ijiec.2017.9.001 (Growing Science; SCI-Q2; JCR-3; IF: 2.455; 15 citations)

38. Liu, S. Q., Kozan, E., Masoud, M., Zhang, Y., & Chan, F. T. S. (2018). Job shop scheduling with a combination of four buffering constraints. International Journal of Production Research, 56(9), 3274–3293. https://doi.org/10.1080/00207543.2017.1401240 (Taylor & Francis; SCI-Q1; ABS3; IF: 9.018; 37 citations)

39. Yan, P., Che, A., Levner, E., & Liu, S. Q. (2018). A heuristic for inserting randomly arriving jobs into an existing hoist schedule. IEEE Transactions on Automation Science and Engineering, 15(3), 1423–1430. https://doi.org/10.1109/TASE.2017.2749429 (IEEE Xplore; SCI-Q1; IF: 5.083; 10 citations)

40. Yan, P., Liu*, S. Q., Sun, T., & Ma, K. (2018). A dynamic scheduling approach for optimizing the material handling operations in a robotic cell. Computers and Operations Research, 99, 166–177. https://doi.org/10.1016/j.cor.2018.05.009 (Elsevier; SCI-Q1; ABS3; IF: 5.159; 32 citations)

41. Liu, S. Q., & Kozan, E. (2017). A hybrid metaheuristic algorithm to optimise a real-world robotic cell. Computers and Operations Research, 84, 188–194. https://doi.org/10.1016/j.cor.2016.09.011 (Elsevier; SCI-Q1; ABS3; IF: 5.159; 34citations)

42. Kozan, E., & Liu#, S. Q. (2017). An operational-level multi-stage mine production timetabling model for optimally synchronising drilling, blasting and excavating operations. International Journal of Mining, Reclamation and Environment, 31(7), 457–474. https://doi.org/10.1080/17480930.2016.1160818 (Taylor & Francis; SCI-Q2; IF: 3.022; 22 citations)

43. Masoud, M., Kozan, E., Kent, G., & Liu, S. Q. (2017). A new constraint programming approach for optimising a coal rail system. Optimization Letters, 11(4), 725–738. https://doi.org/10.1007/s11590-016-1041-5 (Springer; SCI-Q2; IF: 1.769; 17 citations)

44. Masoud, M., Kent, G., Kozan, E., & Liu, S. Q. (2016). A new multi-objective model to optimize rail transport scheduler. Journal of Transportation Technologies, 6, 86–98. http://dx.doi.org/10.4236/jtts.2016.62008 (13 citations).

45. Masoud, M., Kozan, E., Kent, G., & Liu, S. Q. (2016). An integrated approach to optimise sugarcane rail operations. Computers and Industrial Engineering, 98, 211–220. https://doi.org/10.1016/j.cie.2016.06.002 (Elsevier; SCI-Q1; JCR-2; IF: 5.431; 25 citations)

46. Masoud, M., Kozan, E., Kent, G., & Liu, S. Q. (2016). Experimental dataset for optimising the freight rail operations. Data in Brief, 9, 492–500. https://doi.org/10.1016/j.dib.2016.09.015 (4 citations)

47. Mousavi, A., Kozan, E., & Liu, S. Q. (2016). Comparative analysis of three metaheuristics for short-term open pit block sequencing. Journal of Heuristics, 22(3), 301–329. https://doi.org/10.1007/s10732-016-9311-z (Springer; SCI-Q2; ABS3; IF: 2.240; 26 citations)

48. Mousavi, A., Kozan, E., & Liu, S. Q. (2016). Open-pit block sequencing optimization: A mathematical model and solution technique. Engineering Optimization, 48(11), 1932–1950. https://doi.org/10.1080/0305215X.2016.1142080 (Taylor and Francis; SCI-Q2; IF: 3.230; 54 citations)

49. Kozan, E., & Liu#, S. Q. (2016). A new open-pit multi-stage mine production timetabling model for drilling, blasting and excavating operations. Mining Technology, 125(1), 47–53. https://doi.org/10.1179/1743286315Y.0000000031 (Taylor & Francis; 29 citations).

50. Liu, S. Q., & Kozan, E. (2016). Parallel-identical-machine job-shop scheduling with different stage-dependent buffering requirements. Computers and Operations Research, 74, 31–41. https://doi.org/10.1016/j.cor.2016.04.023 (Elsevier; SCI-Q1; ABS3; IF: 5.159; 44 citations)

51. Liu, S. Q., & Kozan, E. (2016). New graph-based algorithms to efficiently solve large scale open pit mining optimisation problems. Expert Systems with Applications, 43, 59–65. https://doi.org/10.1016/j.eswa.2015.08.044 (Elsevier; SCI-Q1; JCR-1; ABS3; IF: 8.665; 62 citations)

52. Kozan, E., & Liu#, S. Q. (2012). A demand-responsive decision support system for coal transportation. Decision Support Systems, 54, 665–680. https://doi.org/10.1016/j.dss.2012.08.012 (Elsevier; SCI-Q1; JCR-2; ABS3; IF: 6.969; 54 citations)

53. Liu, S. Q., & Kozan, E. (2012). A hybrid shifting bottleneck procedure algorithm for the parallel-machine job-shop scheduling problem. Journal of the Operational Research Society, 63, 168–182. https://doi.org/10.1057/jors.2011.4 (Taylor and Francis; SCI-Q2; ABS3; IF: 3.051; 48 citations)

54. Liu, S. Q., & Kozan, E. (2012). An Interactive Planning and Scheduling Framework for Optimising Pits-to-Crushers Operations. Industrial Engineering and Management Systems, 11(1), 94–102. https://doi.org/10.7232/iems.2012.11.1.094 (Korean Institute of Industrial Engineers; 17 citations)

55. Liu, S. Q., & Kozan, E. (2012). Optimum utilisation of rolling stocks for iron ore mining industries. Advanced Materials Research, 361–363, 1529–1534. https://doi.org/10.4028/www.scientific.net/AMR.361-363.1529 (3 citations)

56. Liu, S. Q., & Kozan, E. (2011). Scheduling trains with priorities: a no-wait blocking parallel-machine job-shop scheduling model. Transportation Science, 45(2), 175–198. https://doi.org/10.1287/trsc.1100.0332 (INFOMS; the foremost journal in Transportation; SCI-Q1; ABS3; IF: 4.898; 111 citations)

57. Liu, S. Q., & Kozan, E. (2011). Optimising a coal rail network under capacity constraints. Flexible Services and Manufacturing Journal, 23, 90–110. https://doi.org/10.1007/s10696-010-9069-9 (Springer; SCI-Q2; IF: 2.603; 34 citations)

58. Kozan, E., & Liu#, S. Q. (2011). Operations research for mining: a classification and literature review. ASOR Bulletin, 30(1), 2–23. (An OR journal in Australia; 33 citations)

59. Liu, S. Q., & Kozan, E. (2009). Scheduling trains as a blocking parallel-machine job shop scheduling problem. Computers and Operations Research, 36, 2840–2852. https://doi.org/10.1016/j.cor.2008.12.012 (Elsevier; SCI-Q1; ABS3; IF: 5.159; 170 citations)

60. Liu, S. Q., & Kozan, E. (2009). Scheduling a flow shop with combined buffer conditions. International Journal of Production Economics, 117, 371–380. https://doi.org/10.1016/j.ijpe.2008.11.007 (Elsevier; SCI-Q1; ABS3; JCR-1; IF: 11.251; 54 citations)

61. Liu, S. Q., Ong, H. L., & Ng, K. M. (2005). Metaheuristics for minimizing the makespan of the dynamic shop scheduling problem. Advances in Engineering Software, 36, 199–205. https://doi.org/10.1016/j.advengsoft.2004.10.002 (Elsevier; SCI-Q1; JCR-2; IF: 4.255; 80 citations)

62. Liu, S. Q., Ong, H. L., & Ng, K. M. (2005). A fast tabu search algorithm for the group shop scheduling problem. Advances in Engineering Software, 36, 533–539. https://doi.org/10.1016/j.advengsoft.2005.02.002 (Elsevier; SCI-Q1; JCR-2; IF: 4.255; 44 citations)

63. Liu, S. Q., & Ong, H. L. (2004). Metaheuristics for the mixed shop scheduling problem. Asia-Pacific Journal of Operational Research, 21(4), 97–115. (World Scientific Publishing in Singapore; SCI-Q4; IF: 1.109; 40 citations)

64. Liu, S., & Ong, H. L. (2002). A comparative study of algorithms for the flowshop scheduling problem. Asia-Pacific Journal of Operational Research, 19, 205–222. (World Scientific Publishing in Singapore; SCI-Q4; IF: 1.109; 33 citations)

65. Liu, S. Q., & Yang, Y. S. (2000). Cycle time and entropy generation of finite-time endoirreversible Carnot engine. Journal of Engineering for Thermal Energy and Power, 15(87), 222–234. (1 citation)

66. Liu, S. Q., & Yang, Y. S. (2000). Triple optimal analytical method used in energy systems considering ecological effects. Journal of Engineering for Thermal Energy and Power, 15(86), 98–99.

67. Yang, Y. S., & Liu#, S. Q. (2000). Finite-time endoirreversible Carnot engine’s irreversible factor. Journal of Engineering for Thermal Energy and Power, 15(86), 107–109. (An EI-indexed journal; 5 citations)

专利

68. Chen, Y., Liu, S. Q., Huang, Y., Zhang, X., & Zheng, Y. (2021/6). Automobile production line quality control management system and methodology (汽车生产线品质管理系统及方法),国家知识产权局 (发明专利号: FP1201178CN, 有效期:2021.6.25-2041.6.25).

国际会议论文

69. Lin, M., Liu*, S. Q., Burdett, R., & Luo, K. (2022/12). Dynamic incentives to promote green production of the iron and steel industry in the pandemic period. International Conference on Sustainability, Environment, and Social Transition in Economics and Finance (SESTEF), Paris, France.

70. Masoud, M., Kozan, E., Liu* S. Q., Elhenawy M., Corry P., Burdett, R., D’Ariano, A. (2020). A real-world transport scheduler applied to Australian sugarcane industry. Full paper accepted and presented in the 23rd IEEE Intelligent Transportation Systems Society Conference, Greece.

71. Khan W.A., Chung S.H., Ma H.L., Liu S.Q., Chan C.Y., (2020). Controlling aircraft excess fuel consumption: Using a deep machine learning approach rather than mass-energy balance, the 2020 POMS Annual Conference, Minneapolis, MN, USA.

72. Masoud, M., Elhenawy, M., Almannaa, M. H., Liu, S. Q., Glaser, S., Rakotonirainy, A. (2019). Optimal assignment of e-scooter to chargers. 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 4204–4209. Auckland, New Zealand. (13 citations)

73. Pan W., Liu* S. Q. (2019). A novel deep reinforcement learning approach for a dynamic vehicle routing problem. In Multidisciplinary International Scheduling Conference, MISTA 2019 Ningbo, China.

74. Liu* S.Q., D’Ariano A., Kozan E., Masoud M., Chung S.H. (2019) A classification and literature survey on aviation management. The 8th Int. Conf. Ind. Eng. Syst. Manag. Shanghai, China.

75. Zhang Q., Liu S.Q.*, Masound M. (2019) User equilibrium and system optimum with incomplete information in traffic congestion. The 8th Int. Conf. Ind. Eng. Syst. Manag. Shanghai, China.

76. Masoud M., Khalifa H.A., Liu S.Q.*, Elhenawy M., Wu P. (2019) A fuzzy goal programming approach for solving fuzzy multi-objective stochastic linear programming problem. The 8th Int. Conf. Ind. Eng. Syst. Manag. Shanghai, China.

77. Elhenawy M., Masoud M., Hanafi R., Liu S.Q., Glaser S., Rakotonirainy A. (2019) Meta-heuristic techniques to optimize E-Scooter charging assignment problem. The 1st International Conference on Research in Industrial and Systems Engineering, Bali, Indonesia.

78. Xin H., Liu S.Q.*, Li X., Luan F., Masoud M. (2019). An analysis of China’s energy and mining industry patterns under the background of Sino-US trade war. The 20th APIEMS Conference, Kanazawa, Japan.

79. Liu S.Q., D’Ariano A., Masoud M., Li D., Wu P. (2019). A real-world demand-responsive mine supply chain model. In EURO 2019, Dublin, Ireland.

80. Allihaibi W., Masoud M., Cholette M., Burke J., Karim A., Liu S.Q. (2017) Optimising the service of emergency department in a hospital. 22nd International Congress on Modelling and Simulation (MODSIM 2017), Hobart, Tasmania, Australia, 1255–1261.

81. Kozan, E., & Liu, S.Q. (2014). An open pit multistage mine production scheduling model for drilling, blasting and excavating operations. In J. Whittle & R. Dimitrakopoulos (Eds.), Orebody Modelling and Strategic Mine Planning Conference 2014. Perth, Australia.

82. Mousavi, A., Kozan, E., & Liu, S.Q. (2013). Revolutionising open-pit mine block sequencing. In CRC ORE Annual Assembly 2013. Brisbane, Australia.

83. Kozan, E., Liu, S.Q.#, & Wolff, R. (2013). A short-term production scheduling methodology for open-pit mines. In International Symposium on the 36th Applications of Computers and Operations Research in the Mineral Industry (the 36th APCOM) (pp. 465–473). Brazil. (13 citations)

84. Liu, S.Q., & Kozan, E. (2013). An open-pit mine production scheduling methodology. In ASOR Conference 2013. Melbourne, Australia.

85. Mousavi, A., Kozan, E., & Liu, S.Q. (2013). Open-pit mine optimisation. In The 26th European Conference on Operational Research. Rome, Italy.

86. Mousavi, A., Kozan, E., & Liu, S.Q. (2013). An integrated approach to optimise open-pit mine block sequencing. In Proceeding of International IIE. Istanbul, Turkey.

87. Liu, S.Q., & Kozan, E. (2012). Applying the lot-streaming scheduling methodology to mining industry. In CRC ORE Annual Assembly 2012. Brisbane, Australia.

88. Kozan, E., & Liu, S.Q. (2011). A multi-resource multi-stage open-pit mine production scheduling methodology. In CRC ORE Annual Assembly 2011. Brisbane, Australia (Best Technical Paper Award).

89. Liu, S.Q., & Kozan, E. (2009). A new methodology for optimising a coal rail network under capacity constraints: a real-world case study. In ASOR National Conference 2009. Gold Coast, Australia.

90. Liu, S.Q., & Kozan, E. (2007). A blocking parallel-machine job-shop-scheduling model for the train scheduling problem. In the Eighth Asia–Pacific Industrial Engineering and Management Systems Conference (pp. 10.1–10.10). Kaohsiung, Taiwan.

出版著作

1. Kozan E. & Liu# S.Q. (2018) An Open-Pit Multi-Stage Mine Production Scheduling Model for Drilling, Blasting and Excavating Operations (pp. 655-668). In: Dimitrakopoulos R. (eds) Advances in Applied Strategic Mine Planning. Springer, Cham. https://doi.org/10.1007/978-3-319-69320-0_38. (12 citations)

2. 69. Mousavi, A., Kozan, E., Liu, S.Q. (2014). Book Chapter 5: Integrated approach to optimize open-pit mine block sequencing. In B. Bidanda, I. Sabuncuoglu, & B. Y. Kara (Eds.), Industrial Engineering Non-Traditional Applications in International Settings (pp. 83–98). CRC Press, USA. (19 citations)

关闭